Review and current status of SPECT scatter correction.
نویسندگان
چکیده
Detection of scattered gamma quanta degrades image contrast and quantitative accuracy of single-photon emission computed tomography (SPECT) imaging. This paper reviews methods to characterize and model scatter in SPECT and correct for its image degrading effects, both for clinical and small animal SPECT. Traditionally scatter correction methods were limited in accuracy, noise properties and/or generality and were not very widely applied. For small animal SPECT, these approximate methods of correction are often sufficient since the fraction of detected scattered photons is small. This contrasts with patient imaging where better accuracy can lead to significant improvement of image quality. As a result, over the last two decades, several new and improved scatter correction methods have been developed, although often at the cost of increased complexity and computation time. In concert with (i) the increasing number of energy windows on modern SPECT systems and (ii) excellent attenuation maps provided in SPECT/CT, some of these methods give new opportunities to remove degrading effects of scatter in both standard and complex situations and therefore are a gateway to highly quantitative single- and multi-tracer molecular imaging with improved noise properties. Widespread implementation of such scatter correction methods, however, still requires significant effort.
منابع مشابه
A new approach to scatter correction in SPECT images based on Klein_Nishina equation
Introduction: Scattered photon is one of the main defects that degrade the quality and quantitative accuracy of nuclear medicine images. Accurate estimation of scatter in projection data of SPECT is computationally extremely demanding for activity distribution in uniform and non-uniform dense media. Methods: The objective of this paper is to develop and validate a scatter correction technique ...
متن کاملSimulation and patient studies of scatter correction in cardiac SPECT imaging
Introduction: Myocardial perfusion imaging is a nuclear medicine imaging method that is used to detect coronary artery diseases. One of the main sources of error in this imaging method is the detection of Compton scattered photons in the photopeak energy window used for data acquisition. This results in the degradation of the image contrast, and therefore decreases the...
متن کاملA New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images
Objective(s): In SPECT, the sinogram contains scatter and lack of attenuated counts that degrade the reconstructed image quality and quantity. Many techniques for attenuation and scatter correction have been proposed. An acceptable method of correction is to incorporate effects into an iterative statistical reconstruction. Here, we propose new Maximum Likelihood Expectation Maximiz...
متن کاملMonte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography
Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...
متن کاملReview of transmission scanning configurations in cardiac SPECT
The diagnostic accuracy of single photon emission computed tomography (SPECT) is profoundly influenced by attenuation phenomenon. Soft tissue attenuation degrades cardiac SPECT image quality, thereby decreasing the possibility of the detection of the lesions. A variety of correction techniques based on different assumptions have been used to reduce the impact of attenuation. Several types of sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 56 14 شماره
صفحات -
تاریخ انتشار 2011